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Experimental studies have shown that the boundary-layer flow over a rotating cone is
susceptible to cross-flow and centrifugal instability modes of spiral nature, depending
on the cone sharpness. For half-angles (1) ranging from propeller nose cones to
rotating disks (¢ > 40°), the instability triggers co-rotating vortices, whereas for sharp
spinning missiles ( < 40°), counter-rotating vortices are observed. In this paper we
provide a mathematical description of the onset of co-rotating vortices for a family of
cones rotating in quiescent fluid, with a view towards explaining the effect of iy on the
underlying transition of dominant instability. We investigate the stability of inviscid
cross-flow modes (type I) as well as modes which arise from a viscous—Coriolis force
balance (type II), using numerical and asymptotic methods. The influence of i on the
number and orientation of the spiral vortices is examined, with comparisons drawn
between our two distinct methods as well as with previous experimental studies. Our
results indicate that increasing ¥ has a stabilizing effect on both the type I and type
IT modes. Favourable agreement is obtained between the numerical and asymptotic
methods presented here and existing experimental results for > 40°. Below this
half-angle we suggest that an alternative instability mechanism is at work, which is
not amenable to investigation using the formulation presented here.

1. Introduction

There has been considerable interest in the exact mechanisms governing the stability
of three-dimensional boundary-layer flows in recent decades, with application to the
modern-day design of laminar aerofoils. A great deal of emphasis has been placed on
understanding the instability mechanisms that lead to the breakdown of the boundary
layer (see the comprehensive reviews by Reed & Saric 1989; Reshotko 1994; Saric,
Reed & white 2003 and the papers referenced therein). In contrast to the two-
dimensional case, the three-dimensional boundary layer exhibits both streamwise and
cross-stream flow components. This is reflected in the fact that streamwise Tollmien—
Schlichting waves, cross-flow instabilities and centrifugal instabilities all play a part
in the transition of such flows, the interplay of these three fundamental mechanisms
being dictated by the particular geometry under question. In this study we investigate
the rotating-cone boundary layer in quiescent fluid.
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The influential study of Gregory, Stuart & Walker (1955) contains the first
observation of the stationary cross-flow vortex pattern on a rotating disk, which
is closely related to the rotating cone. Malik (1986) presents numerical solutions
for the curves of neutral stability. Using a parallel-flow approximation as well as
including streamline curvature and Coriolis effects, he shows that there exist two
distinct neutral branches which are termed type I and II respectively. In previous
studies these respective modes are referred to as either upper/inviscid and lower-
branch modes (see Hall 1986 and Malik 1986) or cross-flow and streamline-curvature
modes (see Garrett 2002). Malik’s (1986) results were later verified by the linear
asymptotic analysis of Hall (1986), who recovered Stuart’s type I solution along with
the type II branch.

The first experimental investigations of boundary-layer flow over rotating cones in
quiescent fluid were carried out by Kreith, Ellis & Giesing (1962), Tien & Campbell
(1963) and Kappesser, Greif & Cornet (1973). The scope was restricted to measuring
Reynolds numbers at the onset of transition, whereas later Kobayashi & Izumi
(1983), using hot-wire techniques, refined the transition structure within the boundary
layer, leading to the observation of spiral vortices, which are shed under the action
of strong distorting forces from the mean-flow field. Interestingly, the vortices were
found to be stationary relative to the cone, wrapping round its surface and remaining
fixed for all rotation rates. Experiments have also shown that ¢ has a key influence
on the nature of vortex rotation. For example, on slender cones with ¢ as low as
15°, Kobayashi & Izumi (1983) showed the existence of pairs of counter-rotating
Gortler vortices. These arise from a dynamic instability induced by the centrifugal
force of the flow field. However, as ¢ is increased beyond, say, 30°, they observed
co-rotating spiral vortices. Indeed, Kobayashi (1994) states that co- and counter-
rotating vortices co-exist for ¢ =30° — the apparent transitional value for the change
of underlying instability. Furthermore, in figure (1¢) of Kohama (2000), we see an
experimental image of circular rings for = 30°, which may provide a visualization
of the physical transition between the two vortex types. As the cone half-angle tends
to 90°, Kobayashi & Izumi’s (1983) measurements of the spiral angle (the angle
between the normal to the vortices and the cone meridian) are shown to approach
those observed for a rotating disk. Hence, the stationary spiral cross-flow vortices
first observed by Gregory et al. (1955) on the rotating disk are in fact present
for larger values of i on the rotating cone. In addition, Garrett (2002) computed
the Reynolds numbers at the onset of convective and absolute instability for the
rotating cone and found close agreement with those experimentally observed at the
appearance of spiral vortices and transition to turbulence, respectively. An increasing
discrepancy is observed for i < 50°, suggesting an apparent change in the physical
nature of the instability which provides the route to transition. In a recent study
(Garrett & Peake 2007), the absolute instability results are developed further, and
the discrepancy for slender cones is discussed in the context of existing experimental
results.

Kobayashi & Izumi (1983) also used local-linear stability theory to predict the
onset of convective instability and hence the appearance of the spiral vortices. They
considered a family of cones with ¢ = 15°-90° and critical Reynolds numbers for the
onset of the vortices, the vortex angle and number of vortices are predicted at each
half-angle. The estimated critical Reynolds numbers agree reasonably well with the
experimental values given in their paper. However, the experimental measurements
conducted by Kreith et al. (1962) and Kappesser et al. (1973) agree well with each
other for low  but are substantially different to those of Kobayashi & Izumi (1983).
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Q*

FIGURE 1. Sketch of the coordinate system. The azimuthal axis 6 rotates
with the cone surface.

Also, Kobayashi & Izumi (1983) provide no information on the instability modes
that govern the transition of the boundary layer, and so the relative importance of
different modes at each half-angle remains unknown.

Physically, wide rotating cones (say ¥ >40°) may be considered as the first
approximation to modelling, amongst other aerodynamic applications, the central
nose rotor of an aeroengine fan. Relatively large half-angles are used to deflect any
ensuing turbulent flow away from the turbofan core yet still provide a sufficient
amount of airflow into the fan blades. Such physically relevant flows form the basis
for our motivation, and the aim of the present study is to investigate the effect of
¥ on measurable acrodynamic quantities. We examine the possibility of a critical
half-angle, below which the cross-flow vortex instability no longer dominates, and
also attempt to clarify the points raised in Kobayashi & Izumi’s (1983) theoretical
investigation by using an alternative formulation in the numerical set-up. Firstly, we
introduce the main scalings used to obtain the steady mean-flow in §2. Next, an
asymptotic study at large Reynolds number is presented in §3, where we identify
the type I/II modes. Subsequently, the numerical study is presented in §4, where
we make a parallel-flow approximation in order to conduct a local spatial stability
analysis at points along the cone surface. We demonstrate that the vortices rotate
with the surface of the cone and that the wall shear tends to zero along the type
IT branch, providing a theoretical justification of the assumptions made previously.
We proceed to compare the numerical and asymptotic results in § 5 both with each
other and within the context of existing experimental data. Finally, our conclusions
are presented in § 6.

2. Steady mean flow

This paper presents two analyses performed in different frames of reference and
using slightly different scalings. For clarity we present the formulation used within
the asymptotic study here, as it is the more mathematically detailed component of
the investigation. The modifications to this formulation required for the numerical
study are described in §4.1.

Consider a rigid cone of infinite extent with half-angle v, rotating about its axis
of symmetry with constant angular velocity £2* in a fluid of kinematic viscosity v*,
as shown in figure 1. We choose an orthogonal curvilinear coordinate system which
rotates with the cone (x*,6,z"), representing streamwise, azimuthal and surface-
normal variation, respectively. The local cross-sectional radius of the cone is given by
r*=x"siny (where * denotes dimensional quantities).
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Length quantities are scaled on a characteristic length along the cone surface,
[, and the surface-normal coordinate is further scaled on a modified form of the
boundary-layer thickness (v*/£2" siny)!/?:

x"=0'x, =10z, z=R"%, (2.1)

where ¢ is the non-dimensional wall-normal coordinate within the boundary layer
and R is the Reynolds number as defined in (2.4). (We shall see that the inclusion
of siny!/? enables the half-angle to be scaled out of the problem.) The steady
velocities are non-dimensionalized using the local surface velocity, x" 2" sin i, so the
axisymmetric mean flow is

u=u, = 20" siny (xU(¢), xV(¢), R'*W(¢)), (2.2)

where U, V and W are the non-dimensional velocities in the x*, 0 and z* directions
respectively. We scale the steady pressure as

P =py = p U sin® y R 1x P(¢). (2.3)
This particular choice of non-dimensionalization leads to the Reynolds number
Q1% si
g= 2 smy (2.4)
v

The relevant continuity and Navier—Stokes equations for the cone geometry are
non-dimensionalized using (2.1)—(2.4). Expanding the governing equations in terms of
R and ignoring terms O(R~'/?), leads to the familiar von Karman (1921) equations
for boundary-layer flow over a rotating disk, and an additional equation for the
pressure:

W' 420 =0, (2.5)

WU +U0>—(V+1?>=0", (2.6)
WV +20(V+1)=V", (2.7)
(V4+1)>coty = P/, (2.8)

with boundary conditions

U=0, V=0, W=0,on§=0,}

_ _ 2.9
U—>0,V—>—1, as { — oo. (29)

Note that a prime denotes differentiation with respect to ¢.

Consequently, we note that this choice of non-dimensionalization results in v being
scaled out of the steady flow equations (2.5)—(2.7) for fluid velocity.

The system of equations (2.5)—(2.7) subject to boundary conditions (2.9) is
solved using a fourth-order Runge—Kutta integration method, in conjunction with
a two-dimensional Newton—Raphson searching routine. We iterate on the boundary
conditions at infinity to produce the well-known velocity profiles.

3. Asymptotic study
3.1. Linear disturbance equations for the asymptotic analysis

This study uses the formulation introduced in §2. We proceed to linearize the
governing equations about the von Karman steady mean flow profile (2.2) and
the basic fluid pressure (2.3) by introducing small perturbation quantities &* and p”
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according to

where
it = QU siny (i, 0, W), p=(p 271" sin’ ¥)p.

We non-dimensionalize the governing Navier—Stokes equations and proceed to ignore
nonlinear terms. This leads to the linearized perturbation equations

o n isiny 4 weosyr 185 0w

ax n hoo Tz O (1)
(waax + x}:‘/aae + R‘1/2W88Z>ﬁ + Ui +xu~)8£ - 2(“7“:“*” + 1)5
_ _g 4 % <V2ﬁ _ (#siny + fzcosw)sim/f _ 2s}ilr21w gz) (32)
(ﬂ‘];x + x}:‘/aae - Rl/zv‘vai>ﬁ + Vi +xuvaa‘;/ + <x‘72im/f + 2> (& + weotyr)
(3.3)
<x088x 4 )27889 4 R1/2W88Z>u~) + Rl/zwag — 2<x‘7‘2nw + 1>ﬁcotw
_ —?le N ;<V2w _(asiny +u~;l§os¢)cosw _ 2c}cl)28¢22>’ (3.4)

where h = x siny 4+ zcos ¢ and

92 1 9? 9> siny 9 cosy Q
Ve = =
0x2 + h? 092 + 072 + h 0x h 9z

is the non-dimensional Laplacian operator.

3.2. Inviscid type I modes

To analyse the type I modes on the rotating cone, in accordance with Gregory
et al. (1955) for the rotating disk, we scale the inviscid-mode wavelengths on the
boundary-layer thickness, which is of order R~!/2, in the x and # directions. A small
parameter € can then be introduced, given by € = R/, and we subsequently define
the perturbation velocities and pressure as functions of the wall-normal coordinate z,
in the form

(1.0, ) = a2 va@) @) pateexn (5 { [ antr e+ puter} ).

We expand the streamwise and azimuthal wavenumbers as
ap =0ap+e€a;+-,
Ba=hotepit .

Significantly, we note that the disturbances associated with these perturbations are
neutrally stable, and hence oy and B4 are considered as real quantities. Note also
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that in this frame of reference the assumption of stationary vortices means that the
disturbances have no time dependence.

Upon balancing convection and diffusion terms in the disturbance equations, we
find the existence of two layers: an inviscid layer of thickness O(e?) and a viscous
layer to incorporate the no-slip condition at the wall, of thickness O(e*). The velocity
and pressure perturbations in the inviscid layer are expanded as

us =uo(g) +€eur(§)+ -,

va = vo(¢) +evi(§) 4+,

wa = wo(¢) +ew(§) + -,

pa=po&) +epi(Q)+--,
where ¢ =ze ™3, consistent with (2.1). Here, 8/dx and 3/96 are replaced by 9/dx +
(i/€3){ao + €a; + -+, } and (i/€*){Bo + €B1 + - - -, }, respectively.
3.2.1. Leading-order and first-order eigenmodes

We equate terms of O(e~3) in the expansions of (3.1)—(3.4), which leads to the
governing Rayleigh equation in the critical layer for the surface-normal eigenfunction

ﬁ(wg — o wo) — ﬁ”wo =0, (3.5)
with boundary conditions
wo =0, ¢=0,
wy — 0, ¢ — oo. (3.6)

Here y’>=ay> + ﬁ02/xzsin2w, which acts as the effective wavenumber from the

streamwise and cross-stream directions, whereas U = aoxU + By V /sin/ is interpreted
as the effective velocity profile, as discussed in a similar form by Hall (1986) for the
rotating disk.

We solve (3.5) subject to the homogenous boundary conditions (3.6) by determining

¢=¢ such that U and U both vanish at the location of the critical layer, ¢ =¢.
Mathematically, we note that the important differences with respect to Hall’s analysis
are the radial coordinate r, which is now interpreted as the streamwise distance, x, and
the azimuthal wavenumber is now scaled on the cone half-angle in terms of 84/ sin .

Physically, U is in the direction of propagation of the spiral vortices on the rotating
cone. To interpret this in more detail, we consider the rotating cone surface depicted
in figure 2, noticing that the spiral vortices which wrap around the cone travel at an
angle to the cone meridian. The streamwise and cross-stream wavenumbers, oy and
Bo/r, are shown in the accompanying diagram of figure 2, with the normal to the

spiral vortices in the direction of the effective velocity, U, making a wave angle, ¢,
with the streamwise position vector.

Full details of the analysis are omitted here, but the reader is referred to Hall
(1986) for a complete discussion. In brief, we asymptotically match the leading-order
eigensolution in the viscous wall layer to the first-order solution in the inviscid critical
layer to obtain the governing eigenrelation

wy(0)*Ai'(0) ( PobBi ) <051 _ /310!0> :
Vfow Ai(s)ds 2{ oo x2sin’y it Bo B smyxly, 37

where Ai is the Airy function; ¥ = (i(aoxU’(0) + o V'(0)/sin ¥))'/3; and we normalize
the Rayleigh eigenfunction such that w;(0) = 1. The integrals /; and I, are identical to
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7 = xsiny

FIGURE 2. Schematic diagram of spiral vortex instability of a rotating cone (left) and the
detailed physical interpretation (right), showing streamwise, azimuthal and effective velocity
directions. Note the cone is rotating anticlockwise when viewed from the nose tip.

those defined in Hall (1986), and we obtain Iy =0.094, I, =0.058 4 0.029i. Note that
the sign of the imaginary part of I, differs from that given by Hall (1986). Analysis
of the flow within the critical layer reveals a phase jump in the surface-normal
velocity perturbation, as a result of the integration contour being deformed above the
singularity at ¢ =¢ (see Gajjar 2007).

3.2.2. Type I asymptotic wavenumber and wave angle estimates

Upon solving eigenrelation (3.7) in terms of real and imaginary parts, we arrive at
the leading-order and next-order corrections to the effective wavenumber

2 \3

2 Ba

= |l o —+ -
v < A x2$1n21//>

Bob1 )
=Y+ | woo1 + €/Vo+ -,
Yo <01 xzsin2w /vo
= 1.16 — 9.2R,. P (sin ) /6 4 - - -, (3.8)

as well as the spiral wave angle

s opaX

tan (| = — = —

(2 ¢> Ba
%ox | (m_ﬁlao>x€+...,

Bo Bo  B;
4.26 -1 s
= m =+ 175R5s (Sln Iﬂ) 6 4 s (39)

where Rj; is the Reynolds number based on the boundary-layer thickness,
8" =(v*/22%)1/? given by

Rs = R2x(siny)?. (3.10)
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FiGUure 3. Neutral asymptotic wavenumber predictions, ys-, for inviscid (type I) modes as
functions of Rs- for ¢ =20°-90°.
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FIGURE 4. Neutral asymptotic wave angle predictions, ¢, for inviscid (type I) modes as
functions of Rj- for ¢ =20°-90°.

Figures 3 and 4 show the inviscid branches of the neutral curves for the asymptotic
wavenumber and wave angle predictions, given respectively in (3.8) and (3.9), for
¥ =20°-90° in 10° increments. From these we can see that increasing the cone half-
angle stabilizes the flow by rendering less wavenumbers susceptible to the instability.
For the wave angle, increasing the half-angle towards that of a rotating disk has the
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effect of deviating the spiral vortices more from the streamwise direction. Physically
this is plausible, as there is an increased ‘rotational shear’ force on each vortex spiral
as the cone’s gradient of slant increases with ; vortices are therefore deviated more
from the streamwise direction.

The results can be interpreted in terms of energy transfer: on a rotating disk the
vortices transfer less energy in the radial direction than in the azimuthal direction
(due to the purely rotational effect of the disk), and so the resulting deviation wave
angle is relatively large. For a rotating cone of a moderate to slender half-angle, the
streamline-curvature effect of the cone surface causes the spiral vortices to transfer
more energy in the streamwise direction. This aligns the direction of the effective
velocity propagation more with the streamwise vector, resulting in a reduction in
the observed wave angle. However, this is not the case for the wavenumber as the
effective vorticity shed from the cone boundary layer does not change substantially
with half-angle, which means that the number of vortices that are observed rolling
up and wrapping around the cone surface are of the same order.

3.3. Viscous type 11 modes

In this section we consider the stability of stationary viscous modes to lower-branch
disturbances, using a triple-deck structure consistent with Hall (1986) on the rotating
disk and analogous to that found for Blasius flow over a flat plate (see Smith 1979).

We take the triple-deck structure to be built on a small parameter, which is now
given by € = R~/16, with the lower, main and upper decks typically having thicknesses
of the order of €°,€® and €*, respectively. We define inner variables &, ¢ and Z to
represent O(1) variation within the lower, main and upper decks, respectively. In
line with Hall’s (1986) formulation, the streamwise and azimuthal wavenumbers, o4
and B4, are scaled upon a viscous length scale, so that the velocity and pressure
perturbations become

(i, 5, 0, B) = (ua(2), va(2), wa(2), pA(Z))eXp< i { / Caar. )dx + mw}) .

e
We now expand the streamwise and azimuthal wavenumbers as

oy =0y + ey +Eap o,
Ba=Po+eEBi+eEfot o,

noting that the O(¢) terms are zero, and «; and B; (where i =0,1,2,...) are real
quantities. As was the case with the type I modes, much of the analysis for the
wall-dominated type II modes for the rotating cone transpires to be very similar to
the rotating-disk wall modes studied by Hall (1986), with the important difference of
a scale factor sin .

3.3.1. Triple-deck analysis

We investigate the boundary-layer structure by obtaining leading-order solutions
in each of the decks. In the upper deck, disturbances decay exponentially, whereas in
the main deck we use the no-slip condition to argue that the effective wall shear tends
to zero as ¢ — 0. We therefore choose the leading-order streamwise and azimuthal
wavenumbers such that

Bo

X sinyr

aoU'(0) + 7/(0) = 0. (3.11)

Finally, in the lower deck, the decay of the leading order solution is manifested in
terms of the parabolic cylinder function U(0, \/2A1/4§) (see Abramowitz & Stegun
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1964) through the balance of viscous and Coriolis forces. Here we have

A = i<oz0xU1 + 'ﬁo V1),
sin Y
where U;_;=U%"(0)/i! and V,_;=V¥(0)/i! for i=1,2,.... These solutions are
matched with the first-order solution in the lower deck to arrive at the eigenrelation

. . 1 .
iyoUy sin (1 L V02> I = iA2yysin® ¥ ( B1Vo

—_— A2
ﬂ() U(? ﬂg O(])CU() + Sil’l'l/f)’ (3 )

where I5 and I, are integrals involving U (0, 0) defined in Hall (1986), and the leading-
order effective wavenumber is given by yy = \/(oz§+ﬁ§ /x2sin’ ¥). We obtain the values
I; = 0.599, I, =0.457 consistent with those calculated by Hall (1986).

vols +

3.3.2. Type 11 asymptotic wavenumber and wave angle estimates

As in §3.2.2, the eigenrelation (3.12) has been decomposed into real and imaginary
parts and solved to yield estimates for the local asymptotic wavenumber and wave
angle, given by

) 3 L
- (1 - V°2> 4 <U°I4> iR
U2 A

= 1.22R; (sin )} +--- (3.13)

tan <n_¢) _aax
2 " B

_ (oo + €%ay + -+ *)x
(Bo+€*Br+-)°

oox a; B

and

Bo Bo  Bg
1.21 1 _1

= ——+231R.(sinyy) s + -+, (3.14)
sin Y

Again, we re-scale the wavenumber and wave angle in terms of the Reynolds number
based on boundary layer-thickness (3.10); this eliminates any dependence of the
estimates on the streamwise location x.

Figures 5 and 6 show the lower branches of the neutral curve for the asymptotic
wavenumber and wave angle predictions. In a similar fashion to the inviscid branch,
we see that increasing the cone half-angle has the effect of stabilizing the flow
by reducing the available wavenumbers which are susceptible to the instability.
Furthermore, in the case of the wave angle, increasing the cone half-angle towards
that of a rotating disk still has the effect of increasing the wave angle, which we
interpret physically as a consequence of the rotational shear forcing effect detailed in
§3.2.2.

Comparisons of our wall-mode results, together with those for the inviscid modes
in §3.2, reveal a greater variation in the asymptotic estimates of the wave angle with
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FiGURE 5. Neutral asymptotic wavenumber predictions, ys-, for viscous (type II) modes as

functions of Rs- for ¢ =20°-90°.
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FiGURE 6. Neutral asymptotic wave angle predictions, ¢, for viscous (type II) modes as

functions of Rs- for ¢ =20°-90°.

Y than for the corresponding wavenumber. We attribute this feature to our choice of
non-dimensionalization: scaling lengths on the distance along the cone, [*, eliminates
dependence of the leading-order wavenumber, y;, on .
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The rightmost wavenumber curve and uppermost wave angle curve for both type
I and type II disturbances correspond to ¢ =90° and agree well with the results of
Hall (1986) as well as with the numerical results of Malik (1986) for a rotating disk.

4. Numerical study
4.1. Linear disturbance equations for the numerical analysis

For the numerical study we use scalings slightly different than those introduced in §2,
based on the length scale provided by the boundary-layer thickness §* = (v*/£2*)"/2.
For simplicity the notation used in this section is consistent with that used in the
asymptotic study for equivalent quantities, although the non-dimensionalizations are
different. Care should therefore be taken in any comparisons made with previous
sections. We also consider the cone to be rotating in a fixed frame of reference. This
formulation is consistent with Garrett & Peake (2007) and permits investigation of the
speed at which vortices rotate with respect to the cone body. This frame of reference
necessarily eliminates the appearance of Coriolis terms in the governing equations.

The numerical stability analysis is conducted at local points along the cone surface
x*=x;, where the local surface radius is r; =x; siny. The non-dimensionalizing
length, velocity, pressure and time scales are &°,r; 2%, p'r;>R2*? and §°/Qr;
respectively, which lead to the local Reynolds number

x; 2" sin 8"

*

Vv

RL = XL Sin'g// =T, (41)
which differs from the Reynolds number used in (2.4) of the asymptotic study.
However, we have R; = Rs-, the displacement-thickness Reynolds number defined in
(3.10).

The resulting steady mean flow equations are identical to those presented by
(Garrett & Peake 2007, equations (2)—(5)) when Ty =0. These differ from (2.5)—(2.9)
through the appearance of siny factors and the non-appearance of Coriolis terms.
The numerical study is therefore conducted for each v, and the basic flow quantities
Un;v), V(n;¥) and W(n;y) are necessarily different than those presented in §2.
Note also that n=2z"/8"; so n=2¢/(siny)"/2.

In order to derive the disturbance equations we consider the instantaneous non-
dimensional flow quantities to be given by

~ r ~
U(U,X,Q,I;RL, w):FU(n;w)+u(n’x707t;RL’ w)’
L

r A
V(n,x,0,t;R.,¢) = z V(n;v) +0(n, x,0,t;R., ¥),
L
N 1 .
W(n,x,0,t;R.,¥) = 7 Wn;y) 4+, x,0,t; R, ¥),
L

~ 1 A
P(n’x’evt;RL’w):Fp(n;w)—i_p(n’x’G’t)RL"//)’
L

where the hatted quantities are small unsteady perturbations and the unhatted
quantities are the non-dimensional flow determined by modified forms of (2.5)—(2.7),
as discussed above. The non-dimensional continuity and Navier-Stokes equations
are linearized with respect to these perturbation quantities, and the parallel-flow
approximation is made.

In applying the parallel-flow approximation we ignore variation in R; with local
surface cross-sectional radius and assume that n/r; < 1. The resulting stability
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equations are then strictly local, with location R, =r; appearing as a parameter.
The assumption that R, > 1 (equivalent to 6" < x;) necessarily prohibits analysis
close to the apex at which R, =O(1). The perturbation quantities can then be
expressed in normal-mode form

(ﬁ’ f)v ﬁ)v ]A?) = (“(ﬂ»’l’)’ U(Tl, ‘/f), w(na ‘/f), P(’?a 1//)) exp(i(le + ﬂRLO - )/I))

The wavenumber in the x direction, « =, +ia;, is complex as required by the spatial
analysis presented here; the frequency, y, and circumferential wavenumber, B, are
real. It is assumed that 8 is O(1).

The integer number of complete cycles of the disturbance round the azimuth is
n=pBR;, and we identify this with the number of spiral vortices. We also note that
the disturbance phase velocity in the azimuthal direction is ¢ =y /8, we identify this
as the speed at which the vortices rotate with respect to the cone surface. This is
equivalent to the analysis presented in Garrett & Peake (2002, 2004) for the rotating
sphere; further details can be found in those papers.

As in Garrett & Peake (2007), the perturbation quantities may be written as a set
of six first-order ordinary-differential equations, using the transformed variables (We
wish to point out a typographical error in Garrett & Peake (2007) by bringing to
notice that the correct signs in the definition of ¢s and ¢ are as given here.)

¢1 = (a—isiny/R)u+ Bv, ¢ = (a—isiny/R)u’ + BV, ¢3=w
¢s=p, ¢s=(a—isiny/R)v—Pu, ¢¢=(a—isinyy/R.)v' —pu’.

These equations are

b1 = ¢, (4.2)
{‘1’2] — i([o[2 + B2, +iR (aU + BV — y) + [U siny/],)éy
R.|, R.
W ¢, isin ¢ , p
R (R Jreav)e e
A 2 ior 2V sin ¥ ¢s
i {RLD@“‘ [RLL’
0 = —ion — |25 (44
L s

o, = [iW‘f’l} - [i‘ﬂ — RIL([a2+ﬂz]v+iRL(aU+ﬂV—y)+W§)¢3, (4.5)

R, R,

d’é _ 2VSin‘/f¢1 _ iSin‘/f o ’ i 2 2
[RLL_{ Ry ]5+(<a [R L)V ﬂU)¢3+RL([a G

psinyes Sin'/’d’“} + [W"’} (@7

+iR (aU + BV —y) + [U sinyr]) s + {
RL RL

where the subscripts v and s indicate which of the O(R;!) terms arise from the
viscous and streamline-curvature effects respectively.

The streamline-curvature terms represent the effect of deflection of the inviscid-flow
streamlines through the action of the pressure gradient. By neglecting these terms
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in (4.2)—-(4.7), the system of equations is demonstrated to be consistent with the
Orr-Sommerfeld equation for the rotating cone in the form

(i/R)(@5" —2(c® + B*)BS + (o + B*)’3)
+ (U + BV —y)(@} — (&> + B*)p3) — (@U" + BV")p3 = 0. (4.8)

Further, neglecting both the streamline-curvature and viscous terms in the
perturbation equations leads to Rayleigh’s equation in the form

(@U + BV —y)(¢s — (a® + B*)¢3) — (@U" + BV" )¢5 = 0. (4.9)

Although solutions of (4.8) and (4.9) will be mentioned briefly, the focus of this study
is the solution of the full equations (4.2)—(4.3).

4.2. Numerical solution

In this section we solve the eigenvalue problem defined by (4.2)-(4.7), with the
homogeneous boundary conditions

¢ =0, n=0,

& — 0, 7 — o0, (4.10)

where i =1, 2, ...6. This eigenvalue problem will be solved for certain combinations
of values of «, B and y at each Reynolds number, R;, and for a particular value
of ¢. From these we form the dispersion relation, D(«, 8, y; R, ¥) =0, at each i,
with the aim of studying the occurrence of convective instabilities. This method is in
contrast to that presented by Kobayashi & Izumi (1983) in which a temporal analysis
is formulated in terms of the wave angle.

In what follows the spatial branches are calculated using a double-
precision fixed-step-size, fourth-order Runge—Kutta integrator with Gram—Schmidt
orthonormalization and a Newton—Raphson linear search procedure, using the
numerical code discussed in Garrett (2002).

4.2.1. Stationary vortices

We begin by explicitly assuming that the vortices rotate with the surface of the
cone, i.e. c=1.0, and so y = B, which is consistent with the experimental observations
described in § 1. We provide a theoretical justification of this approach in §4.2.2. The
term ‘stationary vortices’ is used to distinguish between vortices that rotate with the
surface of the cone and ‘non-stationary vortices’ that do not.

In order to investigate the spatial branches at each half-angle, we solve the
dispersion relation for « whilst marching through values of y =p8 at fixed R;.
For each ¢ we find that two spatial branches determine the convective-instability
characteristics of the system. Figure 7(a) shows these two branches in the complex
a-plane when ¢ =70° and R; =400. A branch lying below the «,.-axis indicates
convective instability. In the analysis of the Orr—Sommerfeld equation (4.8), branch
2 is not found indicating that it arises from streamline-curvature effects. Branch 1 is
present in the analyses of the Orr—Sommerfeld and Rayleigh’s (4.9) equations and so
arises from inviscid cross-flow effects.

Figure 7(b) shows the two branches when ¢ = 70° and R; =437, and we see that an
exchange of modes has occurred between them. The modified branch 1 now determines
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FIGURe 7. The two spatial branches for ¢ =70°, showing (a) type I instability from branch 1
only at R, =400 and (b) type I and type II instabilities from the modified branch 1 at R, =437.

the region of convective instability. Increasing the value of R; further causes the peak
between the two minima on the modified branch 1 to move downwards and the
points at which the branch crosses the «,-axis to move apart, thereby widening the
two regions of instability mapping out two lobes on the neutral curve. Above a certain
value of R; the peak moves below the «,-axis, and further increases in R; change the
region of instability, producing the upper and lower branches of the neutral curve.
We identify the cross-flow mode as the type I instability and the streamline-curvature
mode as the type II instability in this frame of reference.

This behaviour of the spatial branches is typical for all v, and neutral curves
(defined by «; =0) have been calculated for half-angles in the range ¥ =20°-90° in
increments of 10°. Neutral curves based on these results are shown in §5, where a
characteristic two-lobed structure is apparent (see Garrett 2002 for further details).
The neutral curve for ¢ =90° is identical to that calculated by Malik (1986).

4.2.2. Non-stationary vortices

To investigate the longitudinal vortex speed we take a different approach in solving
the dispersion relation: we plot spatial branches for fixed values of n (equivalent to
fixing B at each particular R;) and march through values of y. The global neutral
curves for each ¢ would then be the envelope of the individual neutral curves defined
by «; =0 pertaining to each n. This approach does not require a priori knowledge of
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¥ Ry y n ¢

20 165.3 0.0475 8 0.982
40 228.3 0.0616 14 1.004
60 265.5 0.0711 19 0.993
80 283.6 0.0773 22 0.997

TaBLE 1. Critical values of parameters for a range of half-angles calculated by fixing n at
various integer values.

300 : : : : : :
280 R
260 ;
240} ;
20} ;

R, 200} 1
180 ;
160 1
140 ;

120 E

100 1 1 1 1 1 1
0 5 10 15 20 25 30 35

n

FiGure 8. Critical values of Ry for ¥ =20°-80° in 20° increments (bottom to top) calculated
by fixing n at various integer values.

c and allows it to be predicted from y and n at the critical values of R; using the

relationship
YRL
Cc = .
n

This approach has been taken for all half-angles investigated, and figure 8 shows the
enveloping curves in the region of the onset of instability for a number of these. In the
range of n considered, we note that each curve has a single minimum (corresponding
to the most dangerous type I mode) occurring when ¢~ 1.0 as demonstrated in
table 1.

It is important to note that these results demonstrate that disturbances arising from
the type I mode are almost stationary with respect to the cone surface. An alternative
numerical investigation into the rotating disk boundary layer by Turkyilmazoglu &
Gajjar (1998) appears to demonstrate that disturbances arising from the type II mode
can move at different speeds relative to the disk surface and with considerably lower
critical Reynolds numbers than for the type I mode. Under their formulation in the
rotating frame, the value of y is fixed for each neutral curve plot and B is treated
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FiGURE 9. Numerical prediction of the effective wall shear along the type II branch for
¥ =20°, 40°, 70°, 80°; the arrow indicates direction of increasing .

as an independent variable; fixing y at different values then enables the analysis of
vortices which rotate at different speeds relative to the disk surface.

4.2.3. Effective wall shear

The effective wall shear along the lower branch is assumed to be zero in the
asymptotic investigation of the type II mode presented in §3.3.1. This assumption is
not necessary in the numerical formulation, but we are able to predict its value from
the parameters along the type II branch of the neutral curves numerically calculated
in §4.2.1.

The scalings used in the numerical formulation lead to the definition of effective
wall shear as

aU'(0;y) + BV'(0;9)
sin
which is consistent with the mathematical definition given in (3.11). This quantity is
plotted in figure 9 for a number of half-angles. We note that the effective wall shear
does indeed tend to zero in each case as the Reynolds number increases, providing a
justification of the assumption made in the asymptotic investigation.

El

5. Results and discussion
5.1. Comparison between the asymptotic and numerical investigations

We note that the local Reynolds number (4.1) used in the numerical analysis can
be immediately identified with the displacement-thickness Reynolds number defined
by (3.10). Furthermore, a comparison of the respective normal mode perturbation
structures between the asymptotic and numerical investigations reveal a = ar4(sin v)!/?
and B = B4/(x(siny)"/?), where the subscript A denotes the asymptotic parameters,
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FiGure 10. Neutral-stability curves for stationary modes in terms of predicted wave angle:
solid line, numerical; dashed line, asymptotic. (a) ¥ =80°; (b) ¥ =70°; (¢) ¥ =40°; (d) ¥ =20°.

and numerical parameters remain undecorated. All quantities are considered real to
ensure a consistent formulation with both analyses. We subsequently arrive at the
following relations:

_ 1 24 gl
ks = sin 1/,)%(0[ + B7)z, (5.1)
€ = arctan (ﬁ s;n 1//) ; (5.2)

these can be directly identified with the asymptotic predictions of wavenumber ((3.8)
and (3.13)) and wave angle ((3.9) and (3.14)).

Figure 10 shows a comparison between the numerically calculated wave angle ¢
and the asymptotic wave angle ¢ for a number of half-angles. Excellent agreement
has been found for both instability modes at all ¢ between 20° and 90°. Figure 11
shows the equivalent plot in terms of the numerically calculated wavenumber ks
and the asymptotic estimate ys-. We have found excellent quantitative agreement for
all ¥ between 20° and 90°. Qualitatively, we observe a decrease in ¥ both reduces
wave angle branches and shifts the wavenumber neutral curves from right to left.
Essentially, lower critical Reynolds numbers are obtained (as shown in figure 8), which
results in an enlarged unstable region. Hence, decreasing v is found to destabilize the
flow.
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FiGURE 11. Neutral-stability curves for stationary modes in terms of predicted wavenumber:
solid line, numerical; dashed line, asymptotic. (a) ¢ =80°; (b) ¥ =70°; (¢) ¥ =40°; (d) ¥ =20°.

Similar comparisons for the rotating disk have been given recently for stationary
and non-stationary neutral solutions by Turkyilmazoglu (2006, 2007).

5.2. Comparison with previous experimental studies

Figure 12 shows a comparison between the predicted onset of the two instability
modes found in the numerical investigation for stationary vortices and the observed
onset of spiral vortices as measured in three experimental investigations: Kreith et al.
(1962), Kappesser et al. (1973) and Kobayashi & Izumi (1983). Note the use of the
Reynolds number based on the local surface radius, Re = x*2§2" sin> ¢/v* = R2, used
in the experimental investigations.

The predicted onset of the type I mode is seen to match Kobayashi & Izumi’s
(1983) measurements well for y > 60°. However, the predicted onset deviates from
these measurements as the half-angle is reduced. At ¢ =30°, the predictions match
the experimental measurements for Kreith et al. (1962) and Kappesser et al. (1973)
reasonably well. For cones with half-angles between ¢ = 30° and ¢ = 60°, the predicted
onset of the type I mode lies between the three sets of experimental data. The
measurements conducted by Kappesser et al. (1973) are reasonably close to the
predicted onset of the type II mode when ¢ > 60°.

These observations may suggest that Kappesser et al. (1973) were measuring the
onset of the type II modes in their experiments on cones with large ¥ and the onset
of the type I modes on the more slender cones. We also suggest that Kobayashi &
Izumi (1983) were measuring the onset of a type I mode for large v but some other
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FIGURE 12. A comparison of the numerically calculated critical Reynolds number for the
onset of each stationary instability mode with experimental measurements.

mode on the slender cones. The oldest set of data, that of Kreith et al. (1962), is
inconsistent with all other data in figure 12 for ¥ > 50°; we suggest that this is due
to their experimental technique.

Although not shown here, solution of the Orr—Sommerfeld equation (4.8) leads to
lower critical Reynolds numbers for the onset of stationary modes, as indicated in
figure 2 of Lingwood (1995) for the rotating disk. The solution of the full perturbation
equations (4.2)—(4.7) is therefore preferred.

Figure 13 shows a comparison between Kobayashi & Izumi’s (1983) experimental
wave angles and those predicted by the asymptotic and numerical investigations for
the more dangerous type I mode. The critical R numerical prediction refers to the
onset of type I instability, whereas the asymptotic values are at large R (typically
0(10°)). We observe reasonable agreement when y > 40°. It is likely that the small
quantitative discrepancy in this regime exists because we necessarily assume that the
vortices are neutrally stable; however they are experimentally observed to be growing
in the streamwise direction.

As  is decreased below 40°, the theoretical predictions deviate from experimental
results. We attribute this behaviour to the change in the underlying instability observed
by Kobayashi & Izumi (1983). This is consistent with the suggestions of Kobayashi
(1994) and Kohama (2000), who identified 1 =30° as the possible transition case
from co-rotating to counter-rotating vortices.
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FIGURE 13. A comparison between the experimental observations of wave angle and the
predicted value at the onset of type I instability and the asymptotic limit for large R.

We propose that the transition between instability mode depends on a force balance
argument, which is based on the centrifugal forcing due to the basic flow in the
streamwise direction and the Coriolis force in the cross-flow direction. The balance of
these forces determines the amount of momentum the spiral vortices carry as they are
shed from the boundary layer. For slender cones, the centrifugal instability dominates,
and the boundary layer naturally sheds vorticity in equal and opposite directions,
leading to the observed counter-rotating structures. However, as ¥ is increased, the
surface slope increases, and the boundary layer eventually fails to possess sufficient
momentum to shed vorticity in both directions; vorticity is now shed in one direction
only, as the fluid is forced to roll back due to the Coriolis force. The result is the
shedding of co-rotating cross-flow-dominated vortices, and the above comparisons
suggest that this change takes place at around y &~ 30°—40° at which a transition from
the shedding of counter-rotating to purely co-rotating vortices occurs.

The qualitative similarity of all data at large ¥ in figure 13 suggests that the
underlying spiral vortex structure remains unchanged. Hence, vortices are shed at
similar wave angles for increasing ¥ even at vastly differing Reynolds numbers.

6. Conclusions

In this paper we have identified the respective type I and type II modes of primary
instability on the surface of a rotating cone. We have demonstrated their existence
using both numerical and asymptotic analyses in the linear regime and investigated
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the effect of varying ¥ on the important physical parameters, including the local
wavenumber, the local wave angle and the critical Reynolds number at the onset
of primary instability. Our results indicate favourable agreement with a number of
previous studies, most notably with the experiments of Kobayashi & Izumi (1983).
We have seen that increasing i leads to a rise in both type I and type II wave angles,
which we attribute to the increased rotational shear effect: the spiral vortices are swept
more in an azimuthal direction, due to the steep angle of the cone surface, resulting in
a wider orientation angle with respect to the cone meridian. Conversely, for smaller
¥, the spiral vortices undergo a stronger forcing in the streamwise direction and
hence wrap around the surface in a helical nature, propagating at a lower deviation
angle from the streamwise vector. Importantly, we observe that an increase in ¥ has
the effect of stabilizing both the type I and type II modes of cross-flow instability
by increasing the predicted value of the critical Reynolds number at the onset of
instability. Furthermore, an increase in i results in the wavenumber’s neutral curves
undergoing a shift from left to right, which effectively expands the region of stable
flow and gives rise to fewer wavenumbers in the unstable area to the right of the
neutrally stable modes. Physically, in terms of aeroengine intake applications, we
therefore conclude that larger values of ¥ will render the flow over a central spinning
nose rotor more stable, resulting in smoother airflow into the turbofan core through
delaying the onset of turbulence. In addition, the consequential increase in the vortex
wave angle means that airflow which is initially entrained into the boundary layer is
actually shed in a direction aligned further away from the streamwise direction, both
when the spiral vortices appear and when the boundary layer undergoes transition.
For larger values of v, the desirable result is a reduction in unstable or turbulent
air entering the turbofan core. It appears many modern-day nose rotors are designed
with this airflow shedding phenomenon in mind, and typical half-angles are in the
range ¥ ~ 40°—60°.

Our study has successfully extended the comparisons between the investigations of
Hall (1986) and Malik (1986) to the more general rotating cone. To this extent, for
the rigid rotating disk, we have recovered Malik’s (1986) neutral-stability curves and
Hall’s (1986) asymptotics, together with Gajjar’s (2007) type I critical layer correction.

The parallel-flow approximation was made in the numerical investigation presented
in §4. This approximation is found in many other boundary-layer investigations and
means that the perturbation equations solved in that analysis are not rigorous at
O(1/R). Although it is acknowledged that the approximation will lead to inaccuracies
at the predicted critical Reynolds numbers, it is the authors’ opinion that these will
be small. The excellent agreement obtained between the numerical and asymptotic
investigations show that the affects of the approximation are negligible at high
Reynolds number.

Throughout this investigation, we have emphasized that the cross-flow instability
dominates for larger half-angles, say v > 30°—40°. Half-angles below this loose
threshold region physically model a spinning missile, and in this regime an alternative
mechanism appears to be the more dangerous contributor to the onset of instability.
Certainly, a future investigation into these counter-rotating spirals for more slender
half-angles would involve modified vortex-core length scalings, which is apparent from
the visuals of Kobayashi & Izumi (1983). Such observations suggest the possibility of a
viscous-mode-dominated structure at work, pertaining to the onset of the centrifugal
Gortler instability. A theoretical prediction of these Gortler modes, leading to a
critical value of ¢ at which the change of instability occurs, remains an open and
interesting possibility.
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Importantly, our current investigation is confined to a cone rotating within still
fluid. Further physical relevance to the flow over turbofan nose cones would include
the introduction of an external oncoming flow, which has been studied numerically
by Garrett & Peake (2007) for a range of ¢ and experimentally by Salzberg &
Kezios (1965) and Kobayashi, Kohama & Kurosawa (1983) for ¢ = 15°. Previous
studies concluded that increasing the axial flow stabilizes the spiral vortices, hence
suppressing the onset of instability. The stronger the axial flow the stronger the
stabilization. However, work in progress suggests extending the governing parameter
regime reveals the existence of a certain value of axial flow relative to the cone’s
rotational speed, which maximizes the stability of the spiral vortex modes. We hope
to report on this study in due course.

The authors wish to thank J. S. B. Gajjar and an anonymous referee for their
comments. SJG wishes to acknowledge study leave granted by the University
of Leicester. ZH wishes to acknowledge financial support from the School of
Mathematics, University of Birmingham, and the EPSRC.
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